

## Computational Fluid Dynamics at CERN

#### TS/CV/Detector Cooling - CFD Team AT Seminar AT Auditorium – July 28, 2005

Michele Battistin, Sara Correia, Moritz Kuhn, Anna Mueller, Antonio Romanazzi, Vaclav Vins, Izabella Wichrowska-Polok



T

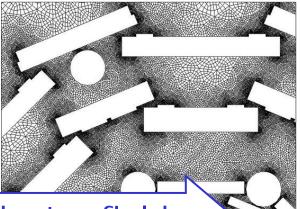


## A CFD service team exists at CERN

- What is CFD
- Industrial and CERN applications
- Introduction to CFD S. Eicher
- Project examples CFD team
- LHC MQY Quadrupole simulation A. Mueller
- Team resources and benefits ullet
- How you can access to this service






## **Computational Fluid Dynamics**



CERN

 Computational Fluid Dynamics (CFD) is an analysis of fluid flow, heat transfer and associated phenomena in physical systems using numerical methods.

The basis of computational fluid dynamics is the reduction of the continuum differential equations describing the dynamics of the fluid (Navier-Stokes + mass and energy conservation equations) into a system of algebraic equations at a finite number of "orid" points, and the



CFD is developing fast in many industry fields

number of points only.



THAMTHAGE THOM

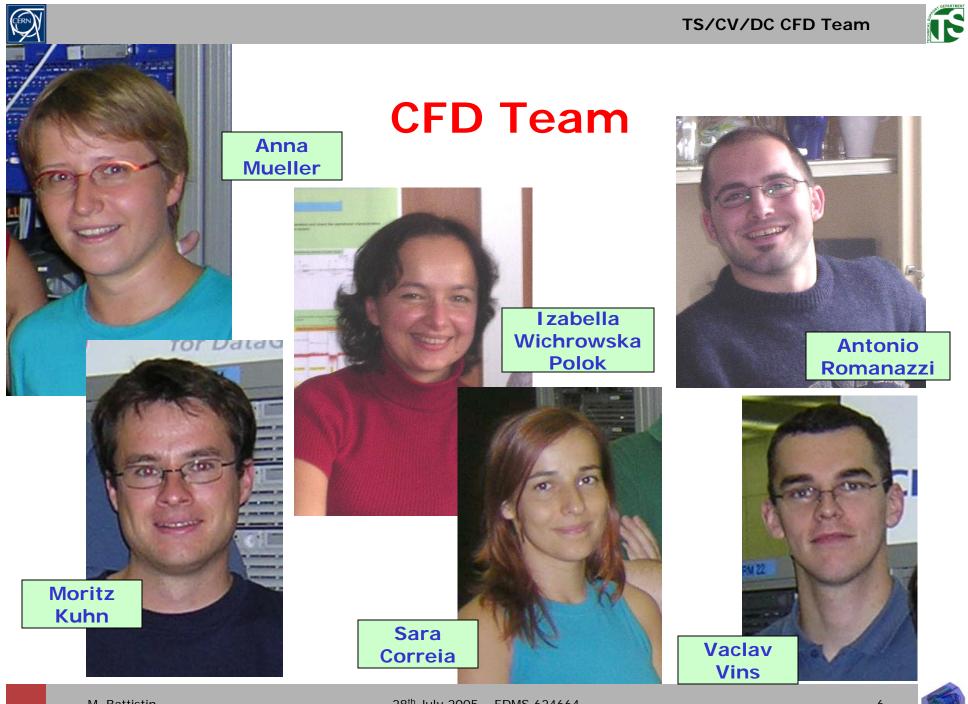




#### A wide range of application fields










### **CFD** is useful in many fields at CERN

| Natural and<br>forced convection<br>heat transfer | ATLAS Muons chambers, ALICE L3 ventilation, ALICE Muons                                                                                                | Some chamber need an additional cooling source: a thermal screen will be implemented                                      |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Air cooling                                       | <b>CNGS Horn</b> and Reflector air cooling<br>analysis, <b>LHCb electronics</b> cooling. Bdg 513<br>ventilation of the grid computer room.             | Additional gaps in the shielding walls, trenches on the target chamber floor                                              |
| Water cooling                                     | SPS magnet cooling analysis                                                                                                                            | Exact definition of the heat power<br>evacuated by cooling water and<br>air                                               |
| Safety                                            | <b>CNGS tunnel</b> : flow analysis in case of decay tunnel cap rupture. <b>The Globe</b> : fire effect simulation, transient temperature distribution. | Special duct installation to resist<br>to high pressure and move the<br>high speed point in a safe zone of<br>ECA4 cavern |
| Gas distribution                                  | <b>ATLAS Inner Tracker</b> CO <sub>2</sub> and N <sub>2</sub> flow analysis. Flushing time estimation before cooling                                   | Definition of the inlet points<br>position and the time to complete<br>the flush.                                         |
| Humidity<br>distribution                          | CMS Tracker flow analysis.                                                                                                                             | Reduction of inlet points from 8 to 1.                                                                                    |
| Thermal conduction                                | LHC MQY Quadrupole quench study                                                                                                                        | Running                                                                                                                   |





M. Battistin

28th July 2005 - EDMS 624664

6



#### **Presentations of**

Sara Izabella Vaclav Antonio Anna Moritz (Michele)



STATE DEPARTMENT



#### ...to sum up

- What is CFD
- Industrial and CERN applications
- CERN examples of CFD Studies
- Team resources and benefits
- How you can access to this service





#### The team resources...

- 6 young engineers (PJAS, FELL, TechStud)
- 6 engineering PCs for pre-post processing
- Access to a 20 Itanium dual CPU 64 bit cluster form
  Openlab for parallel calculation (8 times faster since May 05).
- Access to more **Openlab** machines in case of peak and depending on cluster availability
- 10 development licenses
- 40 calculation licenses 60 more in case of peak





#### **Opportunities...**

- CFD is more and more *integrated* in the design tools
  - Automatic meshing (boundary layer)
  - Model/surface importation
  - Subroutine facilities
  - CAD integration (CATIA)
  - New polyhedra meshing technique
- **Meshing** time (and cost) has dramatically decreased
- PC <u>speed</u> and parallel calculation have reduced the numerical solution time (and cost)
- LHC Grid
- Graphical User Interface more and more user friendly
- CFD is less and less expensive

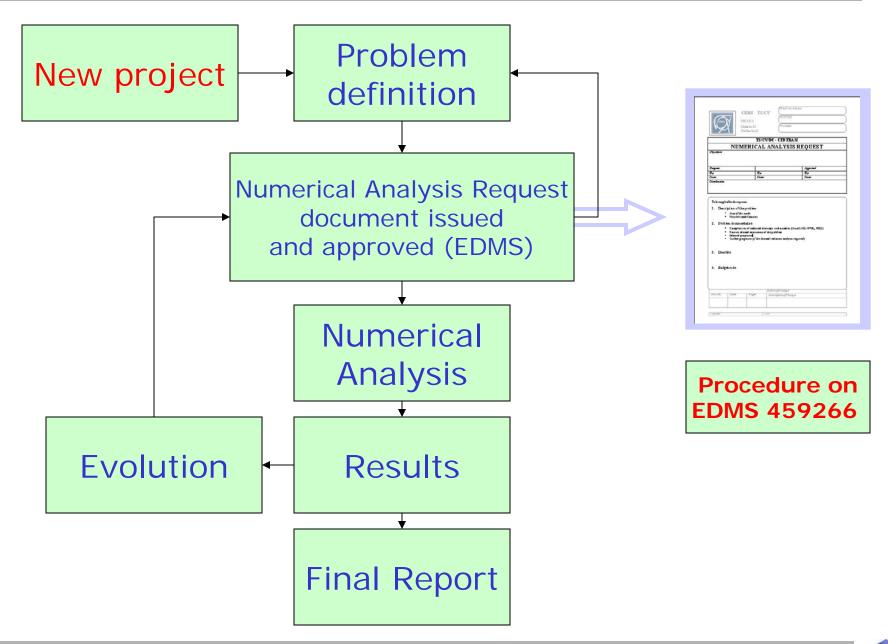
#### The tool has an easy access and gives always a result...



TP



#### ...specific knowledge is required


- Efficiency to build the right model
- Selection of the right numerical solver
- Sensibility to result interpretation
- ...training
- ...experience
- ...knowledge and problem sharing

### How can you access this service...











CHARLES BORN



#### More information on cfd-studies.web.cern.ch

# Questions???

You will find all the slides in EDMS document 624664



28<sup>th</sup> July 2005 - EDMS 624664

